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Movement is changed in pain and is the target of clinical interventions. Yet the understanding of the
physiological basis for movement adaptation in pain remains limited. Contemporary theories are rela-
tively simplistic and fall short of providing an explanation for the variety of permutations of changes in
movement control identified in clinical and experimental contexts. The link between current theories
and rehabilitation is weak at best. New theories are required that both account for the breadth of
changes in motor control in pain and provide direction for development and refinement of clinical
interventions. This paper describes an expanded theory of the motor adaptation to pain to address
these two issues. The new theory, based on clinical and experimental data argues that: activity is redis-
tributed within and between muscles rather than stereotypical inhibition or excitation of muscles; mod-
ifies the mechanical behaviour in a variable manner with the objective to ‘‘protect’’ the tissues from
further pain or injury, or threatened pain or injury; involves changes at multiple levels of the motor
system that may be complementary, additive or competitive; and has short-term benefit, but with
potential long-term consequences due to factors such as increased load, decreased movement, and
decreased variability. This expanded theory provides guidance for rehabilitation directed at alleviating
a mechanical contribution to the recurrence and persistence of pain that must be balanced with other
aspects of a multifaceted intervention that includes management of psychosocial aspects of the pain
experience.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Rehabilitation of control of movement and muscle activity is a
mainstay of management of many pain conditions related to the
musculoskeletal system. This is based on the premise that pain
and movement are intimately linked. In the acute phase, the motor
system provides an opportunity for the nervous system to respond
and remove or reduce a threatening noxious stimulus (mechanical,
chemical or thermal) to the tissues. If the nervous system con-
cludes that a situation is threatening (this may be in response to
discharge of nociceptive afferents or the threat of a noxious input)
it can move or change the mechanical behaviour of the body to re-
move the threat, and reduce the potential for further pain/injury to
the tissues. In the chronic phase the motor response may be less
meaningful, less accurate or unnecessary as the threat to the tis-
sues may be less relevant as a result of the range of physiological
and psychological issues that change the gain of the pain system.
Thus, the pain that a person experiences does not necessarily
match the input from the nociceptive afferents and pain may not
reflect harm or potential harm to the tissues. Maintenance of a mo-
tor adaptation in chronic pain may not provide benefit to the
system.

Many clinical interventions target changes in motor control that
accompany pain. These include motor learning strategies (e.g.
exercise with error correction, augmented feedback, part-practice),
some psychological interventions (e.g. treatments to reduce threat
value of pain), and hands-on techniques (e.g. manual therapy, mus-
cle stretching, needling techniques). However, the mechanisms
that underlie the motor adaptation to pain are surprisingly poorly
understood and two primary theories have been proposed:
‘‘vicious cycle’’ (Roland, 1986) and ‘‘pain adaptation’’ (Lund et al.,
1991). These theories explain some observations in clinical and
experimental pain. However, there are two major limitations. First,
many clinical and experimental observations are inconsistent with
predictions made by these theories; and second, the link between
these theories and rehabilitation is weak. The aim of this paper is
to review the limitations of current theoretical models of the motor
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adaptation to pain, to review a new theory (Hodges and Tucker, in
press) that accounts for many of the observations that cannot be
explained by existing theories, and to consider the implications
for rehabilitation.

2. Current theoretical models for the motor adaptation to pain
and their relationship to rehabilitation

The ‘‘vicious cycle’’ theory proposes a stereotypical increase in
activity of muscles that are painful or move the painful region.
This muscle activity induces ischaemia from vascular compro-
mise and becomes a source of further pain due to accumulation
of pain metabolites (Roland, 1986). Various mechanisms have
been proposed to explain the increase in muscle activity, includ-
ing increased sensitivity of muscle spindles (Johansson and Sojka,
1991). Treatments based on this theory include the use of elec-
tromyography (EMG) biofeedback to train muscle relaxation,
such as reduced activity of the erector spinae muscles in back
pain (Flor et al., 1983) and the temporalis muscle in tension
headache (Holroyd et al., 1984). Although this approach received
some initial support (Flor et al., 1983; Nouwen, 1983) two issues
compromise the validity of the approach. First, although there is
evidence of increased muscle activity, this is not uniform and
many studies show decreased (Wolf and Basmajian, 1977; Zedka
et al., 1999) or no change (Kravitz et al., 1981; Cram and Steger,
1983) in activity. Second, clinical improvement has been reported
despite no changes in muscle activity (Holroyd et al., 1984). This
suggests clinical efficacy of may be related to cognitive aspects
rather than rehabilitation of the motor adaptation. Alternative
theories are required to explain the non-uniform changes in mus-
cle activity and movement with pain and to guide interventions
(see Fig. 1).

The ‘‘pain adaptation’’ theory was developed to explain changes
in voluntary movement and argues that activity of a muscle that is
painful or produces a painful movement is uniformly inhibited,
whereas that of the muscles that oppose the movement
(antagonist) is facilitated (Lund et al., 1991). The outcome would
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be decreased displacement, velocity or force to reduce pain prov-
ocation and further injury. These changes in excitability were
proposed to be mediated by networks in the spinal cord or brain-
stem (Lund et al., 1991). Data in support of the theory can be iden-
tified largely from the effect of acute experimental pain. For
instance, agonist muscle activity is reduced during voluntary
movements of the jaw (Svensson et al., 1995), trunk (Zedka
et al., 1999), neck (Falla et al., 2007) and limbs (Farina et al.,
2005) and a combination of reduced and increased activity of
opposing muscle groups has been shown in dynamic movements
of the leg (Graven-Nielsen et al., 1997). However, the observations
are not universally supported. First, recent work of motoneuron
excitability by evaluation of the response to excitation of cortico-
spinal axons at the level of the mastoid processes showed in-
creased excitability of the motoneurons innervating both the
painful muscle and its antagonist (Martin et al., 2008), rather than
the predicted reduction of excitability of the agonist muscle.
Second, activity of motoneurons in a painful muscle is not uni-
formly decreased (Tucker et al., 2009). Although discharge rate
of some motoneurons is decreased (Farina et al., 2004a,b; Sohn
et al., 2004), if the person is asked to generate a constant force be-
tween trials with and without pain, activity of other units in-
creases to maintain the force output (Tucker and Hodges, 2009).
Other data of motor behaviour (coordination of whole muscle
activity) show that experimentally induced low back pain is
accompanied by redistribution of activity between the multiple
muscles of the trunk rather than a stereotypical and predictable
change in muscle activation during slow voluntary trunk move-
ments (Hodges et al., 2006). This is consistent with the high degree
of variability observed in changes in trunk muscle control across
many studies of clinical low back pain (van Dieën et al., 2003).
There are similar observations from other body systems such as
the jaw (Murray and Peck, 2007).

The link between the pain adaptation theory and rehabilitation
is unclear. What would inhibition and excitation to reduce volun-
tary movement suggest for rehabilitation of pain? It may suggest
that activity should be discouraged to relieve pain, but this is unli-
kely to be successful in restoring function. Consideration of the
motor adaptation to pain in this paradigm has not led to clear
implications for management and new models are required to
drive improvements in rehabilitation.
3. New theory of the adaptation to pain

A new theory has been developed on the basis of data from mi-
cro (motoneuron discharge) to macro (whole muscle behaviour)
levels of the motor system in order to reconcile the complex nature
of the adaptation in motor control that accompanies pain (Hodges
and Tucker, in press). This theory is a progression from the vicious
cycle and pain adaptation theories and is inclusive of the observa-
tions associated with the basis for those theories. The key progres-
sion of the theory is that it aims to account for variation in the
adaptation in motor control rather than the stereotypical adjust-
ments in behaviour predicted by existing theories and includes
consideration of multiple concurrent possible mechanisms
throughout the nervous system that can mediate such changes.
The theory also has an objective to provide guidance for the devel-
opment and refinement of treatments. The following provides a
summary of the main elements of the theory, the associated evi-
dence, and implications for rehabilitation.

The new theory proposes that pain is associated with an adap-
tation in motor behaviour that: (i) involves redistribution of activ-
ity within and between muscles (rather than inhibition or excitation
of muscles in a stereotypical manner); (ii) changes the mechanical
behaviour such as modified movement and stiffness; (iii) leads to
‘‘protection’’ from further pain or injury, or threatened pain or in-
jury (as a result of a variety of changes such as decreased activity to
reduce voluntary movement, increased activity to splint a body re-
gion, or change distribution of activity to modify the distribution of
load on a structure); (iv) is not explained by simple changes in
excitability, but involves changes at multiple levels of the motor
system and these changes may be complementary, additive or
competitive (rather than isolated effects of nociceptor afferent in-
put at the spinal cord); and (v) has short-term benefit, but with po-
tential long-term consequences due to factors such as increased
load, decreased movement, and decreased variability (Hodges
and Tucker, in press) (Fig. 1).

3.1. Redistribution of activity within and between muscles

The new theory proposes that rather that a uniform increase or
decrease of activity there is an adaptation that may vary between
individuals and tasks to change the mechanical response to protect
the tissues or remove threat. A variety of options are available to
meet the overall objective of protection. In some cases this may in-
volve reduced activity (such as the inhibition of masseter muscles
during painful jaw movement (Svensson et al., 1997) consistent
with the pain adaptation theory), increased activity (such as in-
creased activity of sternocleidomastoid in neck pain (Johnston
et al., 2008) consistent with the vicious cycle theory) or a combina-
tion of both (such as increased and decreased abdominal muscle
activity with slow trunk movements during experimental pain
(Hodges et al., 2006). Studies of changes in responsiveness of
corticomotor pathways indicate that muscles can be affected dif-
ferentially. For instance, noxious stimuli to that hand increase
responsiveness of hand muscles to magnetic stimuli over the mo-
tor cortex, but simultaneously decrease responsiveness of proximal
arm muscles (Kofler et al., 1998). Recent work shows similar differ-
ential affects on the distribution of activity between abdominal
muscles with experimental back pain; responsiveness of pathways
to transversus abdominis is reduced whereas those to obliquus
abdominis externus are more responsive (Tsao et al., submitted
for publication).

The redistribution of activity may also occur within a muscle.
Although reduced discharge rate of active motor units during
experimental pain has been interpreted to suggest inhibition (Far-
ina et al., 2004a,b; Sohn et al., 2004), recent work shows the force
output is maintained by recruitment of additional units that were
not active during contractions without pain (Tucker and Hodges,
2009). This cannot be explained by uniform inhibition of the moto-
neuron pool as new motor units are recruited despite reduced dis-
charge of others.

Although the adaptation of muscle activity may be predictable
in some situations (e.g. voluntary jaw (Svensson et al., 1997) and
limb movements (Graven-Nielsen et al., 1997)) this is not the case
for complex systems such as the trunk. There is considerable
redundancy amongst the trunk muscles (i.e. multiple muscles per-
form similar functions) and the objective of protection could be
achieved via multiple strategies such as co-contraction of antago-
nist flexor and extensor muscles, or increased activity of many
combinations of these muscles (van Dieën et al., 2003; Hodges
et al., 2006). This is supported by modelling work (Van Dieën
et al., 2003). Although the large variation in adaptation in trunk
muscle activity could be interpreted to suggest that no underlying
theory can explain the adaptation, the alternative argument is that
each individual develops a protective strategy that is unique based
on experience, anthropometrics, posture, task, etc. The multiple
possible solutions are likely to be related to the clinical subgroups
of low back pain that have been proposed (Sahrman, 2002; O’Sul-
livan, 2005). If a goal of rehabilitation (e.g. using motor learning
strategies) is to modify the adaptation (remove, modify or enhance,
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see below) then this needs to be considered on an individual basis
with respect to the unique solution adopted by the patient. This
would require development or refinement of methods to assess
the adaptation in motor control (e.g. with ultrasound imaging or
electromyography).

3.2. Altered mechanical behaviour

Removal or reduction of threat to the tissues can be achieved
via multiple changes to the mechanics of a system. This could be
removal of the body part from the threat (e.g. nociceptive with-
drawal reflex (Clarke and Harris, 2004), fright/flight response),
reduced displacement/velocity/force (e.g. reduced displacement
and velocity of voluntary jaw movement (Svensson et al., 1995)),
stiffening a segment to prevent movement that is association with
pain or the threat of pain or injury (e.g. trunk stiffening (Hodges
et al., 2009b)), or modification of the distribution of load on a pain-
ful structure (e.g. changed angle of knee extension force (Tucker
and Hodges, 2010)). Although some of these changes could be
coordinated at a basic level of the nervous system (e.g. spinal cord
control of the nociceptive withdrawal reflex), other changes are
more complex involving changes in higher processing and plan-
ning or even voluntary adjustment of force (e.g. search for a less
painful movement option). It is likely that such adaptation would
generally occur subconsciously and in the case of threat of pain
it would not be necessary to have explicit conscious recognition
of fear of pain/(re)injury. Although, the adaptation may be benefi-
cial in the short term, it may pose problems in the long-term and
training an individual to reduce or modify the adaptation may form
the basis of effective treatments (see below).

3.3. ‘‘Protection’’ from further pain or injury, or threatened pain or
injury

A basic assumption, like that proposed in the vicious cycle and
pain adaptation theories, is that the adaptation aims to protect
the body segment from pain or injury, or the threat of pain or
injury. Although the vast majority of experimental and clinical
observations can be reconciled on this basis (e.g. nociceptive
withdrawal reflex, reduced agonist activity during voluntary
movement), recent work provides additional support. When step-
ping down from a stair, activity of gluteal muscles precedes foot
contact to control hip loading (Zazulak et al., 2005) and this activ-
ity is earlier and greater to enhance the protection for the hip
when the stair height increases (e.g. 5 cm vs. 15 cm step height)
(Hodges et al., 2009a). Consistent with the hypothesised protec-
tive nature of the adaptation of motor control with pain, when
the contact of the foot with the floor is associated with pain or
anticipated pain (e.g. painful electrical shock to the back triggered
by foot contact) the strategy normally reserved for the 15 cm stair
height is used for the 5 cm stair (Hodges et al., 2009a) (i.e. a solu-
tion reserved for a high load task is used for a lower load task).
Many permutations of adapted motor behaviour may lead to en-
hanced protection such as decreased muscle activity and force
(Svensson et al., 1995); muscle splinting (Kaigle et al., 1998);
withdrawal (Clarke and Harris, 2004) as described in the previous
section.

3.4. Changes at multiple levels of the motor system

Initial theories assumed relatively simple mechanisms to ex-
plain the adaptation to pain, such as direct input from nociceptive
afferents on motoneurons (Kniffki et al., 1979), inhibitory and facil-
itatory interneurons and circuits in the spinal cord and brain stem
(Lund et al., 1991), and increased spindle sensitivity (Matre et al.,
1998; Wang et al., 2000; Svensson et al., 2001; Thunberg et al.,
2002). Work over the past few decades has highlighted multiple
mechanisms. In addition to well-established spinal mechanisms,
changes have been identified in excitability (Le Pera et al., 2001;
Strutton et al., 2003; Martin et al., 2008; Tsao et al., 2008) and
organisation (Maihöfner et al., 2007; Tsao et al., 2008) of the motor
cortex, and more complex changes in the planning of motor re-
sponses that may be mediated ‘‘upstream’’ of the motor cortex
(Hodges and Moseley, 2003). This latter class of changes include
changes in the pattern of activity of muscles of the trunk initiated
prior to predictable perturbations to the body, such as anticipatory
postural adjustments (Hodges and Richardson, 1996).

Changes in sensory function will have profound effects on con-
trol of movement and have been identified in many painful condi-
tions of the musculoskeletal system (e.g. ankle sprain (Garn and
Newton, 1988), shoulder pain (Warner et al., 1996), back pain
(Newcomer et al., 2000), neck pain (Treleaven et al., 2006), knee
osteoarthritis (Sharma and Pai, 1997)). Changes include reduced
sensory acuity (Sharma and Pai, 1997), increased errors in reposi-
tioning (Brumagne et al., 1999), reduced responsiveness to sensory
input (Brumagne et al., 2004), and reorganisation of the somato-
sensory regions of the brain cortex (Flor et al., 1997).

The multiple mechanisms that may influence movement could
be complementary, additive, or competitive. For instance, compet-
ing effects have been identified following injury to a porcine inter-
vertebral disc with reduced responsiveness of spinal pathways, but
increased responsiveness to stimulation over the motor cortex
(Hodges et al., 2009c). In contrast, activation of groups III and IV
muscle afferents (nociceptive afferents) by hypertonic saline injec-
tion into human biceps brachii facilitates motoneurons innervating
elbow flexor and extensor muscles but depresses excitability of
motor cortical cells projecting to these muscles (Martin et al.,
2008). The net effect may be to limit voluntary activation but en-
hance responsiveness to other inputs. Other work cites comple-
mentary inhibition at both the cortex and motoneurons, but with
a different time-course (Le Pera et al., 2001). The critical message
for clinical practice is that the motor output observed in patients
may have multiple underlying mechanisms and each may have un-
ique implications for rehabilitation.

3.5. Short-term benefit, but with potential long-term consequences

Although adaptation in motor behaviour may be beneficial in
the short-term, failure of the adaptation to resolve after the initial
period following injury (at which time a protective response may
be appropriate for ‘‘survival’’) may pose risks for the tissues and
nervous system. The vicious cycle theory also proposes a conse-
quence of the adaptation to pain, yet this was simply explained
by chemical irritation of nociceptive afferents due to ischaemia
from sustained contraction (Roland, 1986). In addition to this pos-
sibility, the new theory proposes consequences from modified
loading of the tissues as a result of altered mechanical behaviour.
This has important implications for rehabilitation as techniques
to resolve the adaptation may help to reduce persistence or recur-
rence of pain.

There are a number of reasons why the changes in mechanical
behaviour may not be ideal if maintained. First, the protective
solution may compromise the quality of movement. For instance,
increased trunk stiffness in low back pain is associated with de-
creased damping (i.e. control of velocity) (Hodges et al., 2009b),
which is likely to be important to minimise the effect of perturba-
tions. Although people normally move the spine in advance of pre-
dictable challenges to the spine, this is less frequently used in
people with pain (Mok et al., 2007), and is accompanied by greater
perturbation to the spine (Mok et al., 2007) and decreased quality
of the postural recovery after the perturbation (Mok et al., 2009).
In the lower limb, decreased knee flexion (i.e. increased knee
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stiffness) is present in non-copers following ACL tear (Rudolph
et al., 1998) and may underlie ongoing problems.

Second, the adaptation may increase load on the tissues (e.g. if
muscle activity is increased) or change the distribution of load (e.g.
change distribution of activity within or between synergist mus-
cles), which may lead to tissue irritation, particularly if there is
sensitisation. For instance people with back pain have greater load
on the spine during lifting than pain-free individuals as a direct re-
sult of changes in muscle activation (Marras et al., 2004) and this
may lead to structural change over time (Kumar, 1990). Although
changes in the distribution of load may theoretically benefit the
system by unloading a painful structure with short-term benefit
to decrease pain and injury, the adaptation would inevitably in-
crease load on other structures. Many other examples have been
presented in the literature. For instance, movement adaptations
follow ankle sprain such as reduced ankle dorsiflexion (Friel
et al., 2006) to reduce loading of the injured ankle structures leads
to modified kinematics at proximal joints (Davis and Seol, 2005). If
maintained in the long-term these changes may lead to problems
elsewhere in the body (Davis and Seol, 2005).

Third, adaptations in motor behaviour such as increased muscle
activity to splint the painful pain may reduce movement variabil-
ity. Although too much variation is not ideal (Tzagarakis et al.,
2010), so too is too little variation (Hamill et al., 1999). If move-
ment is performed in the same manner with each repetition this
will load the same structures, same joint surface, same muscles
each time. With some variation the load is shared resulting in po-
tential benefits for tissue health. Reduced variation has been iden-
tified in a range of conditions, such as lower limb pathologies and
variability in gait (Hamill et al., 1999).

An underlying premise of the new theory of motor adaptation
to pain is that the adaptation is less relevant or even detrimental
in the long-term. This is aligned to current pain theory that pro-
poses that when pain persists beyond the period of tissue healing
the mechanics at the tissue level may be less important and the
central mechanisms for maintenance of pain may be more impor-
tant. Both physiological and psychosocial factors underlie a mis-
match between the nociceptive discharge in the periphery and
the pain experienced by the individual (Waddell, 1998; Latremo-
liere and Woolf, 2009). These changes include: plastic changes in
the responsiveness and function of neurons and circuits in the
spinal cord that change the gain of the pain system (Cook et al.,
1987); modification of function of the descending facilitatory and
inhibitory pain systems (Arendt-Nielsen et al., 2010); cognitive as-
pects of pain such as catastrophising and fear of pain that modify
threat value (Sullivan et al., 2001). In each of these cases there
may be a mismatch between the relevance of nociceptive afferent
discharge and the experience of pain, and at the tissue level the
adaptation in movement control may no longer be relevant or
appropriate. The alternative argument is that some degree of tis-
sue-level change may have a maintained contribution to the per-
petuation of pain. Panjabi (1992) proposed that adaptation in
muscle and neural control is required to compensate for any loss
of passive support from joint structures as a result of tissue injury.
In this case some degree of adaptation may be beneficial (van Dieë-
n et al., 2003). Although this may be true in some cases, the possi-
bility to replicate changes in motor control (e.g. increased
protection) simply by the threat of pain, in the absence of injury
(Moseley et al., 2004), implies the relationship between injury
and adaptation is not linear; i.e. ‘‘input’’ is not directly related to
‘‘output’’. In some cases the adaptation may be appropriate leading
to reduced pain in the long-term, and this could explain the mis-
match between structural joint changes and pain where some
people experience little pain despite significant joint damage.
The lack of pain in this context may be due to a combination of
an appropriate adaptation of the motor system to compensate for
the structural damage (i.e. appropriate protective strategy) and
the fact that pain is an output of the central nervous system based
on interpretation of inputs, and not directly explained by the input
from nociceptor discharge. If the nervous system has taken action
to protect the injured/painful part (i.e. adapted the motor behav-
iour), then the pain ‘‘output’’ may be reduced. Taken together it
would seem reasonable to conclude that it is necessary find the
right balance between restoration of control to some baseline
and the maintenance or retention of elements of the adaptation
in order to meet the demands of function.

Although the proposal that failure of resolution of the adapta-
tion to pain may contribute to recurrence or persistence of pain is
based on sound reasoning, there is lack of data from high quality
longitudinal studies to support this hypothesis. Some data sup-
port the association between non-resolution of acute atrophy of
the multifidus muscle and future recurrence of back pain (Hides
et al., 2001). However, that study was small and the group with
muscle recovery also received a different treatment package than
the control group and this may have independently affected the
outcome. Investigation of the relationship between adaptation
and long-term outcome will not be simple as there is potential
for enormous variation in adaptation and the interaction between
biological, psychological and social aspects when pain persists is
complex. A final consideration is that adaptation leading to
long-term changes may be caused by factors other than an initial
injury or pain related to a musculoskeletal structure. For instance,
motor control may adapt in response to more widespread or cen-
trally mediated pain states or other issues that challenge the mo-
tor system (e.g. respiratory (Hodges et al., 2001) and continence
(Smith et al., 2007) challenges affect trunk muscle control in a
similar manner to spinal pain). Like the adaptation to an acute
pain/injury these changes may lead to further problems (Smith
et al., 2009).
4. Implications of the new theory of motor adaptation in pain
for rehabilitation of musculoskeletal pain

How can the new theory inform rehabilitation for people with
musculoskeletal pain? Although existing models of the adaptation
to pain provide limited guidance for rehabilitation, the expanded
theory of motor adaptation to pain provides a rich array of impli-
cations that can be used to shape interventions. Such interventions
may include exercise (e.g. training of motor control or movement
strategy), psychological interventions (e.g. treatments that change
the threat value of pain), and physical modalities (e.g. modalities
that can influence muscle activation such as manual therapy tech-
niques). It is important to acknowledge that it is not possible to
predict the size of a clinical effect on the basis of physiological data,
and clinical trials are needed to determine whether changes to
clinical practice lead to better outcomes. However, hypotheses
can be proposed for testing in appropriate clinical trials.

A key aspect of the new expanded theory for motor adaptation
to pain with implications for rehabilitation is the proposal that the
adaptation may have short-term benefit but with long-term conse-
quences. It is proposed that if the motor adaptation is excessive
or fails to resolve after it is no longer helpful it may contribute to
the perpetuation or recurrence of injury and pain. The clinical con-
clusion is that clinicians need to identify aspects that may be
excessive/inappropriate and develop a strategy to train the patient
to restore more optimal control. The alternative and not mutually
exclusive view is that the adaptation may be necessary to compen-
sate for deficit in the passive support for the segment (e.g. injury to
intervertebral disc) and that enhanced control is required to meet
the demands for control of the segment (Panjabi, 1992; van Dieën
et al., 2003). In rehabilitation the challenge will be to identify the
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relevance of the adaptation and find the balance between that
which is required and that which is not.

According to the theory, resolution of the motor adaptation
would involve redistribution of activity between and within muscles
to modify the mechanical behaviour of the body segment. Redistri-
bution of activity between muscles is already considered as part of
existing interventions. For instance rehabilitation of the coordina-
tion between the medial and lateral vasti muscles is effective for
the management of anterior knee pain (patellofemoral pain syn-
drome) (Crossley et al., 2002) and treatment of back pain that in-
cludes modification of the coordination between trunk muscles
reduces pain and disability and prevents recurrence of episodes
(O’Sullivan et al., 1997; Hides et al., 2001; Stuge et al., 2004; Ferre-
ira et al., 2006; Macedo et al., 2009). Clinical tools are used to aid
redistribution of activity between muscles such as techniques to
provide feedback (e.g. electromyography (McConnell, 1986; Cross-
ley et al., 2002) and ultrasound imaging (Hides et al., 1996)) and
techniques that enhance the function of specific muscles (e.g.
application of therapeutic tape (Cowan et al., 2002b)). Redistribu-
tion of activity within the upper trapezius has been applied in
shoulder pain (Samani et al., 2010). A similar approach may have
potential in other conditions.

As changes may occur at multiple levels of the nervous system, a
range of clinical strategies are likely to be required to restore/re-
train ideal control. If the motor adaptation was simply due to input
from nociceptive afferents on motoneurons (Kniffki et al., 1979) or
due to reflex inhibition (Spencer et al., 1984) it could be assumed
that the most appropriate treatment should be application of tech-
niques to reduce pain (e.g. analgesic agents) or techniques that
may increase motoneuron excitability (e.g. peripheral electrical
stimulation). Treatment of pain is unlikely to be sufficient to re-
store motor control as it has been shown that many aspects of
the motor adaptation persist between episodes, despite resolution
of pain (Hodges and Richardson, 1996; MacDonald et al., 2009),
that is, motor control adaptation does not require ongoing nocicep-
tor stimulation for maintenance. Interventions that target higher
levels of the motor system are likely to be required. These include
motor learning strategies to change planning and coordination of
movement and muscle activity (such as biofeedback techniques
to change distribution of activity described above), and manage-
ment of unhelpful cognitions such as catastrophising and fear-
avoidance, which may influence the muscle activation strategies.
The greatest challenge will be to validate clinical techniques to
determine which aspects of the motor adaptation are necessary
to change.

5. Can motor adaptation be changed with intervention and does
it make a difference?

A variety of clinical interventions have been proposed to retrain
motor control in musculoskeletal pain. These interventions vary in
their approach and are based on a multitude of clinical theories
such as aiming to modify loads on painful structures (Crossley
et al., 2000) and enhance protection of a painful part (McGill,
2002; van Dieën et al., 2003). The common feature is the use of
relearning strategies to change motor features considered to con-
tribute to the perpetuation or recurrence of pain.

There are varying levels of experimental support for these ap-
proaches, but evidence as accruing that motor adaptation to pain
can be resolved with rehabilitation and this is associated with po-
sitive clinical effects. One example is work in low back pain that
has investigated temporal and spatial aspects of activation of the
deep abdominal muscle, transversus abdominis, in trials of motor
rehabilitation. The implication is not that this change constitutes
the entirety of the adaptation, but that it is a common component
that can be used as a ‘‘marker’’ of adaptation. Delayed and reduced
activation of transversus abdominis is common in low back pain, it
persists between pain episodes (Hodges and Richardson, 1996;
Ferreira et al., 2004), and can be induced by experimental pain
(Hodges et al., 2003). Delayed and reduced activation of transver-
sus abdominis can be restored with motor relearning strategies
(Tsao and Hodges, 2007). These changes persist after cessation of
training (Tsao and Hodges, 2008), are related to the magnitude of
improvement in pain/disability (Ferreira et al., 2010), and baseline
values can indicate individuals who will respond to the interven-
tion (Ferreira et al., 2010). These interventions also change the
organisation of the motor cortical networks (assessed with trans-
cranial magnetic stimulation of the motor cortex) that have input
to this muscle (Tsao et al., 2010b) and the amplitude of change
in timing is related to the magnitude of cortical reorganisation
(Tsao et al., 2010b). Current data do not clarify whether symptom
improvement is due to improved activation of transversus abdo-
minis or the resolution of other aspects of the adaptation, such
as more optimal control of other trunk muscles or movement
and/posture. Regardless, the activation of transversus abdominis
serves as a useful marker of the motor recovery.

Other work indicates that activation of another deep trunk mus-
cle, multifidus, can be improved with motor control training and
net activity of other more superficial trunk muscles reduced (Tsao
et al., 2010a). Application of a similar program to the restoration of
coordination of vasti muscles of the knee successfully changes rel-
ative timing of muscles (Cowan et al., 2002a; Cowan et al., 2003)
and this is linked to clinical improvement.

An important observation in this work is that improvements
in motor control appear dependent on conscious and precise cor-
rection of movement and muscle activity. Simple activation of
the muscles without feedback or error correction, such as the
activation of transversus abdominis during a sit-up, does not lead
to changes in temporal or spatial features of muscle activation
(Tsao and Hodges, 2007). This is consistent with the observation
that cortical plasticity is dependent on the extent of conscious
attention and skill during motor training (Karni et al., 1995;
Plautz et al., 2000; Remple et al., 2001), and that movement
repetition in the absence of skill or precision does not induce
reorganisation (Plautz et al., 2000; Remple et al., 2001). Although
other clinical techniques may also change coordination (e.g.
application of tape over the skin modifies symptoms and muscle
activation (Crossley et al., 2000; Cowan et al., 2002b; Macgregor
et al., 2005); joint manipulation/mobilisation changes transversus
abdominis activation is some (Marshall and Murphy, 2006), but
not all trials (Ferreira et al., 2007)), current data indicate motor
control training with conscious attention to correction of motor
control is effective.

Does pain interfere with motor learning? It has been suggested
that pain may interfere with plastic change in the motor cortex
(Boudreau et al., 2007). That study showed when a tongue protru-
sion task was performed in the presence of pain, the expected
training-induced increase in responsiveness of the corticomotor
pathway was reduced. This was argued to be due to changes in cor-
tical excitability in presence of pain (Le Pera et al., 2001). Although
it is possible that pain may affect learning processes and animal
studies indicate compromised capacity for learning due to pain-in-
duced changes at the spinal cord (Hook et al., 2008), inspection of
data from the study of Boudreau et al. (2007) suggest that failure of
adaptation could be secondary to modified performance of the
training task during pain. If quality of movement is maintained,
the training-induced changes are unaffected by pain (Tucker
et al., 2010). Thus pain may compromise learning by its affect on
the performance of the task that is practiced rather than a direct
effect of pain on plastic processes that are required for learning
in the motor system. This highlights that quality of training is
likely to be a key determinant of treatment success, and the poten-
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tial benefit of combining training with other modalities to relieve
pain. Other work also highlights the ability of an intervention to
change motor function depends on the quality of training; higher
quality training induces larger changes in temporal aspects of mus-
cle activation (Tsao and Hodges, 2007). Taken together these find-
ings indicate that motor plasticity may be enhanced by training
without pain provocation and training with high quality feedback.
Although some methods are available to assess motor adaptation
and provide feedback (e.g. electromyography (Cowan et al.,
2002a), ultrasound imaging (Richardson et al., 1999; Teyhen
et al., 2007; Stokes et al., 2007) to change the redistribution of
activity within and between muscles further technological devel-
opment is likely to be required to optimise this approach across
a range of conditions.
6. Conclusion

The new theory of motor adaptation to pain provides a more
comprehensive explanation of clinical and experimental observa-
tions. The theory also provides a range of principles that can be ap-
plied and trialed for the rehabilitation of musculoskeletal pain.
Some of these implications are supported by data from clinical
trials whereas others provide predictions that require testing to
confirm the magnitude of potential clinical effects.
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